Indirect stabilization of weakly coupled systems
نویسندگان
چکیده
We investigate stability properties of indirectly damped systems of evolution equations in Hilbert spaces, under new compatibility assumptions. We prove polynomial decay for the energy of solutions and optimize our results by interpolation techniques, obtaining a full range of power-like decay rates. In particular, we give explicit estimates with respect to the initial data. We discuss several applications to hyperbolic systems with hybrid boundary conditions, including the coupling of two wave equations subject to Dirichlet and Robin type boundary conditions, respectively. Furthermore, we show how these tecniques can be applied to the same problem when the coupling occurs on a subset of the boundary. In this case, either exponential or polynomial decay rate might be expected, depending on suitable compatibility conditions.
منابع مشابه
Indirect stabilization of hyperbolic systems through resolvent estimates
We prove a sharp decay rate for the total energy of two classes of systems of weakly coupled hyperbolic equations. We show that we can stabilize the full system through a single damping term, acting on one component only of the system (indirect stabilization). The energy estimate is achieved by means of suitable estimates of the resolvent operator norm. We apply this technique to a system of wa...
متن کاملIndirect stabilization of weakly coupled systems with hybrid boundary conditions
We investigate stability properties of indirectly damped systems of evolution equations in Hilbert spaces, under new compatibility assumptions. We prove polynomial decay for the energy of solutions and optimize our results by interpolation techniques, obtaining a full range of power-like decay rates. In particular, we give explicit estimates with respect to the initial data. We discuss several ...
متن کاملCoupled fixed point results for weakly related mappings in partially ordered metric spaces
In the present paper, we show the existence of a coupled fixed point for a non-decreasing mapping in partially ordered complete metric space using a partial order induced by an appropriate function $phi$. We also define the concept of weakly related mappings on an ordered space. Moreover common coupled fixed points for two and three weakly related mappings are also proved in the same space.
متن کاملControls Of Large-Scale Systems
1. Historical Background 2. Modeling and Model Reduction 2.1. Aggregation 2.1.1 Balanced Aggregation 2.2. Perturbation 2.2.1. Weakly Coupled Models 3. Strongly Coupled Models 4. Hierarchical Control 4.1. Goal Coordination: Interaction Balance 4.2. Interaction Prediction 5. Decentralized Control 5.1. Stabilization Problem 5.2. Fixed Modes and Polynomials 5.3. Stabilization via Dynamic Compensati...
متن کاملErratum: Coupled fixed point results for weakly related mappings in partially ordered metric spaces
In this note we point out and rectify some errors in a recently published paper “N. Singh, R. Jain: Coupled Fixed Point Results For Weakly Related Mappings In Partially Ordered Metric Spaces, Bull. Iranian Math. Soc. 40 (2014), no. 1, 29-40”.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011